Roll No	0.0
---------	-----

BCA-404

B. C. A. (Fourth Semester) EXAMINATION, May, 2012

Paper Fourth

OPERATIONS RESEARCH

Time: Three Hours]

[Maximum Marks: 75

Note: Section A is compulsory. Attempt seven questions out of ten questions from Section B and one question from Section C.

Section - A

9 each

- 1. Define operational research and discuss its scope.
- 2. Find the optimum transportation cost for the following problem. The unit transportation cost is given in the matrix below:

From\To	I	II	Ш	IV	Available
A	15	10	17	18	2
В	16	13	12	13	6
C	12	17	20	111	option 87
Requirement	3	3	4	5	

Section - B

6 each

3. What is Degeneracy? Discuss a method to resolve degeneracy in L. P. problem.

permentaging aganifector at the P. T. O.

- 4. What are the main phases of O. R. study?
- 5. What are the disadvantages of Big M-method over two-phase method?
- 6. Define assignment problem with a suitable example.
- 7. Find the basic solution for:

$$3x + 6y + 5z + t = 12$$
$$x + 4y + z + 2t = 8$$

- 8. Discuss various cost associated with queuing problems.
- Explain the concept of optimum service rate and optimum cost.
- Formulate the transportation problem as generalized linear programming problem.
- 11. What is Simulation? Explain the need of simulation in operational research.
- 12. Give the basic steps used for simulation.

15 each

13. (a) Obtain the dual of the L. P. P.:

Maximize:

$$z = x_1 - x_2 + 3x_3$$

Subject to the constraints:

$$x_1 + x_2 + x_3 < = 10$$

$$2x_1 - x_2 < = 2$$

$$2x_1 - 2x_2 + 3x_3 < = 6$$
and $x_1, x_2, x_3 > = 0$.

(b) What is non-linear programming?

14. (a) A company has three plants at location A, B and C, which supply to warehouse located at D, E, F, G and H. Monthly capacities are 800, 500 and 900 units respectively. Monthly warehouse requirements are 400, 400, 500, 400 and 800 units respectively. Unit representation cost (in ₹) are given below:

To From	D	E	F	Ġ	Н
A /	5	8	6	6	3
В	4	7	7	6	.6
C	8	4	6	6	4.

Determine an optimum distribution for the company in order to minimize the total transportation cost.

(b) What is Branch and Bound method for solving Integer programming problem?