BCA-401(O)

B. C. A. (Fourth Semester) EXAMINATION, May, 2013

(Old Course)

Paper First

BASICS OF OPERATING SYSTEM

Tir	ne : 7	Three Hours] [Maximum Marks : 7:	7			
No		ection A is compulsory. Attempt seven questions from ection B and one question from Section C.	1:			
		Section - A				
1.	(a)	What is an Operating System (O. S.)? Why O. S. is	5			
		called resource allocater ?	5			
	(b)	What is Process Control Block ?	1			
	(c)	What is Scheduler ?	1			
	(d)	Explain the real time operating system and its different types also.				
	(e)					
2.		sider a system with a set of processes P1, P2 and P3				
	their C. P. U. burst times, arrival times and priorities being					
	men	tioned as ahead:				

Process	CPU Burst Time	Arrival Time	Priority
P ₁ P ₂ P ₃	5	· 0	2
	15	1	3
	10	2	1

Assume 1 is to be highest priority and calculate the following:

- (a) Average waiting time using FCFS, SJF (Preemptive and non-preemptive) and priority (preemptive and non-preemptive) scheduling mechanisms.
- (b) Average turn-around time using FCFS, SJF (preemptive and non-preemptive) and priority (preemptive and non-preemptive) scheduling mechanisms.
- (c) Assume time quantum to be 2 units of time. Calculate average waiting time and average turnaround time using Round-Robin scheduling.

Section - B

- 3. What is process state? Draw a diagram of process state. How can we keep the process in memory?
 6
- Explain page fault. List necessary steps to handle page fault.
 Draw the diagram.
- 5. What is Segmentation ? How is segmentation differ than paging ?
- 6. What are the necessary conditions for the occurrence of a deadlock?

		[3] BCA-401(O)						
7.	List t	he methods of dead-lock recovery. 6						
8.	What	are different scheduling criteria ?						
9.	What is dispatcher? What are its functions? 6							
10.	Explain the functions of I/O traffic controller, I/O device handler and I/O scheduler.							
11.	Expla	ain demand paging with the help of an example. 6						
12.		pare the different page replacement algorithms with ect to time complexity and cost of implementation. 6						
		Section - C						
13.	(a)	Consider that the pages are referenced in the following sequence: 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.						
		How many page faults would occur for the following replacement algorthims, assuming one, two, three and four frames:						
		(i) LRU						
		(ii) FIFO						
		(iii) Optimal						
	(b)	How can a dirty bit/modify bit improve the performance of a virtual memory system? 3						
14.	(a)	What is thrashing? What is the cause of thrashing? How can the system eliminate the problem of thrashing?						

(b) Consider the following snapshot of a system:

Process	Allocation			Max. Requirement		
	A	BC		A	В	C
P_0	0	1 0	3.5	7	5	3
P_1	2	0 0		3	2	2
P ₂	- 3	0 2		9	0	2
P ₃	2	1 1		2	2	2
P ₄	0	0 2		4	3	3

List the avilable number of resources be given by avail vector as (3, 3, 2). Use the Banker's algorithm to answer the following:

- (i) Find out the need matrix
- (ii) Is the system in a safe state ?