Roll No.

BCA-203(O)

B. C. A. (Second Semester) EXAMINATION, May, 2013

(Old Course)

Paper Third

MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE—II

Time: Three Hours]

[Maximum Marks: 75

Note: Section A is compulsory. Attempt seven questions out of ten from Section B and one question from Section C.

Section-A

- Define the following:
 F-distribution, moment generating function, probability, distribution function and mutually exclusive events.
- (a) What is the chance that a leap year selected at random, will have 53 Sundays?
 - (b) Two bags contain respectively 3 white, 5 black and 5 white, 3 black balls. One ball is drawn from each bag. Find the probability that they are white.

Section - B

each

3. State and prove Baye's theorem for probability.

P. T. O.

- State and prove Central limit theorem.
- 6. One type of aircraft is found to develop engine trouble in 5 flights out of a total of 100 and another type in 7 flights out of a total of 200 flights. Is there a significant difference in two types of aircrafts so far as engine defects are concerned.
- The first four moments of a distribution about the value 4 of variable are -1·5, 17, -30 and 108. Find the moments about mean, β₁ and β₂.
- 8. If r is Poisson variate such that P(r = 1) = P(r = 2) then evaluate P(r = 4).
- Find the moment generating function for triangular distribution defined by:

$$f(x) = \begin{cases} x & 0 \le x \le 1\\ 2 - x & 1 \le x \le 2 \end{cases}$$

10. The diameter of an electric cable is assumed to be continuous random variate with probability density function:

$$(x) = 6x(1-x), 0 \le x \le 1$$

- (i) Verify that above is a probability density function.
- (ii) Find mean and variance.
- 11. State and prove addition theorem of probability.
- Define testing of hypothesis with two types of error.

R T. O.

[3]

Section - C

- Compute the student l for the following values in a sample of eight: -4, -2, -2, 0, 2, 2, 3, 3 taking the mean of universe to be zero.
- 14. Find the first three moments of the binomial distribution.
- 15. From the following table, showing the number of plants having certain characters, test the hypothesis is that the flower colour is independent of flatness of leaf:

Total	Red flowers	White flowers	
119	20	99	Flate Leaves
41	5	36	Curled Leaves
160	25	135	Total

#41