Roll No.

BCA-404(N)

B. C. A. (Fourth Semester) EXAMINATION, May/June, 2015

(New Course)

Paper Fourth

OPTIMIZATION TECHNIQUES

Time: Three Hours] [Maximum Marks: 75

Note: Attempt questions from all Sections as directed.

Section-A

(Short Answer Type Questions)

Note: All question are compulsory. Each question is of 3 marks.

- 1. (A) State the characteristics of the standard form of an LPP.
 - (B) What is the role of OR in decision-making?
 - (C) Solve graphically the following LPP:

$$z = 6x_1 - 2x_2$$

$$2x_1 - x_2 \le 2$$

$$x_1 \leq 4$$

$$x_1, x_2 \ge 0$$

(D) Construct the dual of the problem:

P. T. O.

BCA-404(N)

Minimize:

$$z = 3x_1 - 2x_2 + 4x_3$$

Subject to the constraints:

$$3x_1 + 5x_2 + 4x_3 \ge 7$$

 $6x_1 + x_2 + 3x_3 \ge 4$

$$7x_1 - 2x_2 - x_3 \le 10$$
$$x_1 - 2x_2 + 5x_3 \ge 3$$

$$4x_1 + 7x_2 - 2x_2 \ge 2$$

$$x_1, x_2, x_3 \ge 0$$

0 through the machines A and B in the order AB. Processing time in hours are given as: There are seven jobs, each of which has to go

7	6	S	4	w	2	1	Job
9	11	10	6	15	8	3	Machine A
w	p=4	12	6	10	10	00	Machine B

minimize the total elapsed time T. Determine a sequence of these jobs that will

E A marketing company finds that the time spent mean 20 minutes. The arrival of customers their jobs has an exponential distribution with

> rate of 10 per 8 hour a day. Determine: follow the Poisson distribution with an average

- The company expected idle time each day
- (ii) How many jobs are ahead of the average set just brought in?
- (G given in the following table: The cost of four operators to four machines are

3						
		Mad	chin	es		
	D	0	B	A		
	S	10	w	10	I	
	11	7	9	S	II	Ope
	9	w	18	13	Ш	rators
	7	2	ω	15	IV	

machine on each product: the required processing time in minutes for each A firm manufactures three products A, B and C. firm has two machines M_1 and M_2 and below is The profit are ₹ 3, ₹ 2 and ₹ 4 respectively. The

M_2	M		Machine -
2	4	A	
2	3	В	Product
4	5	C	

manufacture 100 A's, 200 B's and 50 C's but not more then 150 A's. machine minutes respectively. The firm must Machines M₁ and M₂ have 2000 and 2500

(I) Explain briefly the following: Set up on LPP to maximize profit.

- (i) Set-up cost
- (ii) Holding cost

P. T. O.

B-78

8-78

which cells contain the transport cost in rupees:

Find the optimum solution to the following T. P. in

Section-B

(Long Answer Type Questions)

Note: Attempt any two questions. Each question is of 12 marks.

2. Using Simplex method, solve the LPP:

Minimize:

$$z = 4x_1 + 8x_2 + 3x_3$$

Subject to:

$$x_1 + x_2 \ge 2$$

$$2x_1 + x_3 \ge 5$$

$$x_1, x_2, x_3 \geq 0$$

3. The following table gives the cost of transporting material from supply points A, B, C and D to demand points E, F, G, H and J:

D	0	В	A	From	To
13	14	15	00		H
19	20	13	10		F
7	6	100	12		G
6	10	11	17		Н
12	3	9	15		1

The present allocation is as follows:

A to E 90, A to F 10, B to F 150, C to F 10,

C to G 50, C to J 120, D to H 210, D to J 70

 (a) Check if this allecation is optimum. If not find an optimum schedule.

> Required F J F T 30 W S 0 00 7 W₂ 30 7 00 S 9 W₃ 15 9 4 7 0 W4 20 0 S 7 W₅ S 9 00 Available 40 10 20 30

- 5. A self-service store employs one cashier at its counter.

 Nine customers arrive on an average every 5 minutes while the cashier can serve 10 customers in 5 minutes.

 Assuming Poisson distribution for arrival rate and exponential distribution for service rate. Find:
- (i) Average number of customers in the system.
- (ii) Average number of customer in queue or average queue length.
- (iii) Average time a customer spends in the system.
- (iv) Average time a customer waits before being served.

Section-C

(Long Answer Type Questions)

Note: Attempt any two questions. Each question is of 12 marks.

6. A particular has a demand of 9000 units -1 year. The cost of one procurement is ₹ 100 and the holding cost

B-78

B-78

per unit is instantaneous and no shortage are allowed. Determine: ₹ 2.40 per year. The replacement is

- economic lot size.
- Ξ no-of order per year.
- (iii) time between orders.
- (iv) total cost per year is the cost of one unit is ₹ 1.
- 7. Give Johnson's procedure for determining an optimal sequence for processing m jobs on two machines
- 00 machine whose purchase price is ₹ 7,000 is given: The maintenance cost and resale value per year of a

00	7	6	5	4	w	2	-	1041	
5,900	4,700	3,700	2,800	2,100	1,600	1,200	900	3	Maintenance Cost
400	400	400	500	600	1,200	2,000	4,000	(3)	Resale value

When should the machine be replaced?

	9.
cert	The f
ain types	following m
certain types of light bulbs:	P
bs:	rates
	have
	been
	ality rates have been observed for a
	for
	00

6	5	4	w	2	1	End of week
1.00	0.97	0.85	0.49	0.25	0.09	Probability of Failure to Data

bulbs are replaced in the same operation, it can be done out, continue replacing burnt out bulbs as they fail: bulbs at fixed interval, whether or not they have burnt for only a ₹ .70 a bulb. It is proposed to replace all If a bulb fails in service, it cost ₹ 3 to replace but if all

- replacement? What is the best interval between group
- 6 At what group replacement per bulb, would a preferable of the adopted policy? policy of strictly individual replacement become