Roll	No.	000000000000000000000000000000000000000
TOOL	TAO.	

BCA-202(N)

B. C. A. (Second Semester) EXAMINATION, May/June, 2015

(New Course)

Paper Second

DIGITAL ELECTRONICS AND COMPUTER ORGANIZATION

Time: Three Hours

[Maximum Marks : 75

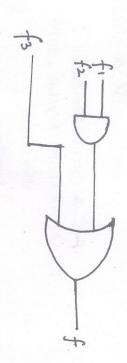
Note: Section A is compulsory. Attempt any two questions from Section B and any two questions from Section C.

Section-A

3 each

(Short Answer Type Questions)

- 1. (A) How many 32 K × 1 RAM chips are needed to provide a memory capacity of 256 K bytes?
 - (B) What is the minimum number of gates required to implement the Boolean function (AB + C) if we have to use only 2 input NOR gates?
 - (C) Find the minimum number of D flip-flops needed to design a mode 258 counter.


B-28

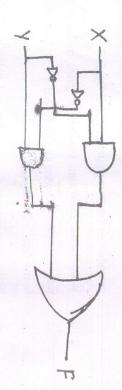
P. T. O.

[3]

BCA-202(N)

(D) Given f₁, f₃ and f is canonical sum of products form (in decimal) for the circuit.

FIO


$$f_1 = \sum m(4, 5, 6, 7, 8)$$

$$f_3 = \Sigma m (1, 6, 15)$$

$$f = \sum m(1, 6, 8, 15)$$

then find f₂.

(E) Find the output of the following logic diagram.

118

B-28

- (F) Implement EX-NOR gate with the help of NAND gate. Show the output at each step.
- (G) Express the Boolean function F = P + Q'R in a sum of mini terms.
- (H) Simplify the Boolean function:

$$F = (A'BC + AB'C' + ABC + ABC')$$

(I) Explain the JK flip-flop with its working

(Long Answer Type Questions)

2. What is PLA? A combinational circuit is defined by the functions:

$$F_1(A, B, C) = \Sigma(3, 5, 6, 7)$$

$$F_2(A, B, C) = \Sigma(0, 2, 4, 7)$$

Implement the circuit with PLA having three inputs, four product terms and two outputs.

3. (i) Implement the following function using the don't care conditions:

$$f(c, d, a, b) = \Sigma(0, 2, 6, 8)$$

and
$$d(c, d, a, b) = \Sigma(1, 4, 10)$$

- (ii) What is the use of min terms and max terms?
- 4. Design a counter with the following binary sequence: 0, 1, 3, 7, 6, 4 and represent using T flip-flops.
- Write short notes on any three of the following: 4 eac
- (i) Shaft register
- (ii) Race condition in RS flip-flop
- (iii) Full adder
- (iv) Design procedure of sequential circuits

B-28

Section-C

8 each

(Long Answer Type Questions)

- A RAM chip has a capacity of 1024 words of 8 bits each (1 k × 8). Find the number of 2 × 4 decoders with enable lines needed to construct a 16 k × 16 RAM from 1 k × 8 RAM.
- 7. What is decoder? Design a BCD to Decimal decoder. 10, 2
- 8. Draw the block diagram of sequential circuit and discuss it.

 Implement the function F (A, B, C) = Σ (1, 3, 5, 6) with multiplexer. 2, 10
- 9. Answer any three of the following:

4 each

- (i) Design 4 ×16 decoder with two 3×8 decoder
- (ii) Logic diagram of a look ahead carry generator
- (iii) Half-substractor
- (iv) Simplify the Boolean function:

$$F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$$