Roll No.

BCA-504(N)

B. C. A. (Fifth Semester) EXAMINATION, Dec., 2013

(New Course)

Paper Fourth

NUMERICAL METHODS

Time: Three Hours]

[Maximum Marks: 75

Note: Section A is compulsory. Attempt any seven questions out of ten from Section B and any one question from Section C.

Section-A

(Numerical/Analytical/Problematic Questions)

1. (a) Show that:

4

$$\Delta \log f(x) = \log \left\{ 1 + \frac{\Delta f(x)}{f(x)} \right\}$$

(b) Estimate the missing term in the following table:

X	f(x
0	1
1	3
2	. 9
3	?
4	81

Give the reason why the resulting value differs from 33.

[3]

10. Find f (10) by Lagrange's interpolation formula:

6

 Use Euler's method with h = 0 · 05 to find the solution of the differential equation:

$$\frac{dy}{dx} = x + y$$

with the initial condition $x_0 = 0, y_0 = 1$, in the range $0 \le x \le 0.20$.

Section-B

6 each

(Short Answer Type Questions)

- Find a root of the equation x³ x 11 = 0 correct to three decimals using Bisection method.
- Using Newton-Raphson method evaluate to two decimal figures, the root of the equation e^x = 3 x lying between 0 and 1.
- 5. Find the third divided difference f(3,4,5,6), where $f(x) = x^3 x$.
- Using Gauss elimination method, solve :

$$x+y+z=6$$

 $3x+3y+4z=20$
 $2x+y+3z=13$

7. Find $\frac{dy}{dx}$ at $x = 0 \cdot 1$ from the following table:

0-4	0.3	0.2	0-1	>
0.9604	0.9776	0-9900	0.9975	

- . Calculate the value of $\int_{-3}^{3} x^{4} dx$ by Simpson's $\frac{1}{3}$ rule and compare with the exact value.
- 9. Calculate $\int_0^6 \frac{dx}{t+x^2}$ by using Simpson's $\frac{3}{8}$ rule. Compare the result with the actual value of the integral.

Find the real root of 3x - cosx - 1 = 0 by the method of False position.
 Obtain the function whose first difference is

13 14 13

Section—C (Long Answer Type Questions)

18 each

 $x^3 + 3x^2 + 5x + 12$

13. Use Gauss-Seidel method to solve the system of equations:

$$3x+y+z=1$$

$$x+3y-z=11$$

$$x-2y+4z=21$$

- 14. Use Runge-Kutta method to approximate y when x = 0.1 and x = 0.2, given that x = 0 when y = 1 and $\frac{dy}{dx} = x + y$.
- 15. From the following table, find the number of students who obtained less than 55 marks:

30-40 40-50 50-60 70-80							BCA-504(N)		
21 21 32 41 25 21	Marks	Marks	30-40	40-50	50-60	60-70	70-80	(N)	
1,900	No. of Students	No. of Students	21	32	41	25	21		

R-85

R-85