with suitable illustration. Also discuss the Fulkerson's Describe the rules for drawing the network diagram

using Hungarian Method. Describe the steps in solving assignment problems

bus the network of the following project and

compute the entitest and latest time for each event and

Write short notes on:

(d)	(0)	(b)	(a)
AOA	Activity	Event	C.P.M
1-3	*		nesqueen .
2-4	1.3	2	CHAIR

AON

Roll No.

Solve me Pruest broftsminns bropient:

BBA-406(N)

BBA (Semester-IV) Examination-2014

(New Course)

Paper: Sixth

Operations Research

Time: Three Hours] 08 2 (Maximum Marks: 70 Subject to, 5x + 3y < 75

att test bi marks-org norishogenest gaiwoliol off ovio? Note: Attempt all questions. All questions carry equal x 50'N ≥ 0"

research in modern management. Discuss the significance and scope of operation Plant X Planta

concerned with optimization". Discuss in brief. "Operation research advocates system approach and is

2 Subject to constraints, Maximize $Z = 3x_1 + 5x_2 + 4x_3$ Solve the Linear programming problem:

$$2x_1 + 3x_2 \le 8$$

 $2x_2 + 5x_3 \le 10$
 $3x_1 + 2x_2 + 4x_3 \le 15$
and $x_1, x_2, x_3 \ge 0$.

Mean Comise)

Laber: Pixel

Maximize P = 42x + 18ySolve Linear programming problem Graphically.

Subject to,
$$5x + 3y \le 75$$

$$x + y \le 20$$
$$42x + 18y \ge 300$$

canal const

 $x \ge 0, y \ge 0.$

Apric: Viterahi vili ducationz' VIII de

optimality: Solve the following transportation problem and test its

Requirement	Plant Z Project Requirement		Plant X Plant Y			a la anone l	
aphooving	72	8	16	4	A	Project	
research	92	16	24	8	В	Project	
Орагацоп	41	24	16	8	C	Project	
	215/205	77	82	56	capacity	Plant	

BBA-406(N)-T-2100

of minimizing total time for doing all the jobs: Solve the following imbalanced assignment problem

	9			0	B			
6	aziga Scot	4	3	2	TIG MEMORY	Operations		
4	39 VIO	6	7	2	6	1		
McLoc	3	2	8	10 5 DE	2 2	2	Jobs	000
101.48m	8	3	6	8	5	3		,
6 23	9	4	9	MIC 2011	2	4		
8	2.	5	8	7	6	5		

4 also find critical path: compute the earliest and latest time for each event and Draw the network for the following project and

	Activity	1-2	1-3	2-4	3-4	4-5	4-6	5-7	6-7	7-8
	Immediate		4 W -	1-2	1-3	2-4 & 3-4	2-4 & 3-4	4-5	4-6	6-7 & 5-7
SALITY STITUTE	Time (days)	(S) DA	10A (4)	6	2	I	7	8	4	3

BBA-406(N)-T-2100